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The deformation of a ~ree-dimensional growing elastic cylinder under the action of an ~ compressive load is considered, 
taking into account the influence of the stress on the growth rate. To analyse the stability of exact ~ symmetric solutions, 
approximate differential relations were obtained, valid for objects with small transverse dimensions. The statement of the problem 
of the evolution of perturbations takes into account the variability of the rheological and geometric properties of the rod whilst 
it is being deformed. The physical meanin~ of the results obtained is discussed by comparing the time-scales for the development 
of perturbations and the; unperturbed process. 

Mathematical modelling of the growth and development of living organisms requires one to take into account how 
the growth rate depends on mechanical stresses [1-3], which is known from observation and experiment. The simple 
model that is investigated below enables us to study explicitly the consequences of this basic biological fact. The 
presence of feedback, governed by the dependence of the manner and rate of growth of material on its stress-strain 
state, fundamentally d~tinguishes the problem of biological growth from related problems dictated by technological 
applications [4]. 

Consider the mechanical deformation of thin objects (the human spine, the stalk and root of a plant) growing 
under conditions of a~fial compression. Here we will model this common phenomenon [1] (the best-known example 
of which is scoliosis) in its most general form by analysing mechanisms present in all the above systems. Estimation 
and refinement of the results obtained, taking into account the specific factors of actual processes, is an independent 
problem in each case 

1. The model of gxowing biological tissue as an effectively "visco-elastie" medium was first postulated 
directly in [5] and ~ obtained by coarsening the assumptions of more detailed analysis [6, 7]. 

We will confine ourselves to linear constitutive equations and use the following system of governing 
equations 

C = Kcr, e i l A + M~r, e - e e + • i (1.1) 

Here C is the elastic strain tensor, e, e/, C are the velocity tensors for total, inelastic (growth) and elastic 
strains, respectively, ¢r is the stress tensor, and K is the elastic coefficient tensor. In the second formula 
of (1.1) the tensor A describes the "proper" growth of the material (when there are no stresses) and 
the tensor M corre.,;ponds to the influence of stresses on the growth deformation. 

We shall take the elastic (though not the growth) deformations to be small, so that it is unnecessary 
to specify the type of the time derivative when specifying the relation between the tensors C and e e, so 
that one can take llhe simplest dependence (in components) e~t = dE~/dt and obtain the following 
differential relation 

ekl = V(k lOi) - Akl + gklmna m + d ( Kkl,nnomn ) (1.2) 

where ~t are the components of the velocity vector, parentheses denote symmetrization over the 
appropriate indices.: and the symbol d/dt denotes differentiation with respect to time for fixed comoving 
coordinates. Replacement of the operator d/dt in (1.2) by, for example, the Oldroyd derivative, leads 
to the appearance of additional negligibly small terms (of order eee). Here and below summation is 
over repeated subscripts and superscripts. 
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From Eqs (1.1) and (1.2) it is clear that there is an important difference between the model under 
consideration and the classical visco-elastic (Maxwellian) medium: the possibility of deformation when 
there is no stress. The relation between the deformation rate and the stress is governed by the mediating 
chemical (metabolic) processes. Hence any thermodynamic inequalities restricting the possible values 
of components of the tensor M cannot be written down for the general case. Equations (1.1) and (1.2), 
together with the momentum equations, form a closed system of equations if the tensors A, K and M 
are given. The slowness of the growth changes predetermines the negligible smallness of both the 
momentum flux due to mass inflow into an element of the medium and inertial effects; processes that 
are rapid compared with the growth can be taken into account by being averaged with respect to slow 
("growth") time [1, 2]. 

2. Consider the growth of an object which initially has the shape of a rectangular cylinder. We choose 
a fixed Cartesian system of coordinates (Fig. 1) with the origin at the base of the cylinder and the x- 
axis directed along the initial direction of the generators. (If necessary, we further specify: x = x 1, y = 
x 2, z = x3.) We will assume the material to be isotropic in its elastic properties and denote its Young's 
modulus, Poisson's ratio and shear modulus by E, a and ~ respectively. The growth is assumed to be 
transversally isotropic, the plane of isotropy being initially perpendicular to the x-axis, and after 
deformation being perpendicular at each point to the fibre that was initially directed parallel to the 
x-axis. 

In a fixed Cartesian system of coordinates oriented along the plane of isotropy (the chosen Eulerian 
system of coordinates satisfies this condition at least at the initial time) Eqs (1.2) take the form 

= 1 d 0 x d 

ey=ws+l,x+O~22,y+~23az+d("yl-d(~(,x+,z)) (y ~-~ z) (2.1) 
0 s dt~,E.) dt\E 

The subscripts x, y,z, xy, xz, yz replace the subscripts ii, 22, 33, 12, 13 and 23, respectively. The coefficients 
e (growth "viscosity" along the x direction), 0,, o~, 0~ ~ are expressed using the symmelay of the tensors 
e and ~ [8] in terms of five parameters. (For example, eliminating the coe~cients governing the shear 
deformation, we obtain ~ = o~ + o~, = tx = (1/0 - ~12 - -  1/0s + o~)/2.) 

We take w > 0 and ws > 0, which ensure positive growth deformation when there are no stresses, 
which is typical for tissue undergoing intensive growth. To be consistent with obse~ations of many 
biological objects over a wide range of loads which show the accelerating effect of tensile axial stresses 

Fig. 1 
f 
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(and, conversely, the slowing effect of compressive stresses) on growth, we shall always require the 
inequality 0 > 0 to t~e satisfied. The signs of the remaining coefficients associated with growth will neither 
be required nor discussed below. 

For small changes in the comoving coordinate lines relative to their initial directions (which does 
not exclude large displacements, e.g. along the x-axis) formulae (2.1) can be applied directly in the Euler- 
ian system of coordinates shown in Fig. 1, but already as an approximation. 

In this Cartesian system the equilibrium equations have the form 

~ k t  / ~x t + F ~ = 0 (2.2) 

where b a = F 3 = 0, while F 1 = pg is the distribution of the volume force of gravity (with thex-axis being 
assumed to be directed perpendicularly). We shall assume the lateral surface of the object to be unloaded, 
while on the face ~ = L) we set the conditions ~y = 0, ax = - P/S(t, L), where S(t, x) is the area of 
the section normal to the x-axis and P = P(t) ~> 0 is the axial load applied to the face. 

If the weight of the object can be neglected compared with the external force P (so that we can put 
/~ = 0) and all rhe:ological coefficients depend only on time, then the system of equations (2.1) and 
(2.2), taking kinematic relations into account, has an exact solution. It corresponds to growth without 
changes in the cylindrical shape with a spatially homogeneous distribution of stresses and deformation 
rates, which is governed by the following easily solvable finite and differential relations between functions 
of time only 

P 
~x  = - ' - S '  ~y  = ~z  = ~xy = ~xz = I~yz = 0 

w l e  d f . ~  
e x = - - O ~ - - ~ . - ~ J "  exy=e,z =exz=O (2.3) 

1 P l- d foP'~ 1 dS =ey+ez =2e~. 
ey=ez =Ws-o'-"[-S" - ~ . - ~ J '  S dt 

For the rate companents there is a linear dependence on the coordinates: ~ = e~x, ~ = e~y, ~z = 
ezz(choosing obvious and unimportant attachment conditions). 

The solution (2.3) keeps its form (neglecting changes in the section geometry due to small elastic 
deformations) for vertical growth when the intrinsic weight is taken into account, when the condition 
1lOs = 0 is satisfied (the axial loads have no effect on the sideways growth). In this ease one must put 

L 

P = P(x,t) = Po + I pgSdx (2.4) 
x 

in (2.3), where P0 it~ the face load. The variables ax, ex, ey, e~, S are now governed by (2.3) for a density 
p that is known as a function of t andx. Relations (2.3) can also be used as an approximation when 1/0, 

0 for sufficiently short times, when the inhomogeneity in the thickness does not lead to any substantial 
change in the stress distribution. 

Omitting the sm.'dl elastic deformations, which are insignificant when there are no perturbations of 
uniform growth, we obtain (for loads of general form) from (2.3) an equation giving the length of the 
cylinder 

L Pax L - wL + p(L, t) = O, p(L,t) = ~ (2.5) 
0 o S 

where the dot denotes differentiation with respect to time (of functions of time only). 
Suppose that the coefficients w, ws, 0, 0s are constant. If the load is then restricted to just a constant 

pressure on the face (P = P0 = p0S;p0 = const), then Eqs (2.5) produce exponential growth in length 
(whenp0 < ON,) and thickness (whenp0 > 0s < w,). The compressive stressp0 = 0w halts the axial growth, 
and forp0 > 0w shortening occurs and L - ,  0 as t --> **. To obtain results that are physically meaningful 
at long times it is necessary to use a non-linear extension of Eqs (1.1) or take into account the time 
dependence of the theological coefficients. 

The coordinate lines of the comoving system of coordinates are not deformed for a concentrated 
load: in the general case within the limits of applicability of formulae (2.3) such a distortion can be 
ignored. Using (2.3) the relation is found between the Eulerian coordinate x and the comoving coordinate 
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which initially coincides with x. For a load applied only at the upper end (P = P0) this relation takes 
the form 

x = L~i~ (2.6) 

corresponding to uniform extension (L0 being the length of the object at t = 0). Formula (2.6) is also 
approximately true in the case when the stresses have little effect on the axial growth (P/(SO) <~ w). 

We also consider the isometric problem corresponding to constant cylinder length L; such a 
formulation is dictated by experiments with rigid restrictions on growth. Specifying zero axial displace- 
ment and free tangential slip on the face (axy = a= = O) and assuming non-loading of the lateral surface, 
we have, in the case of insjLmificant mass forces, the exact solution 

e x =e~y =exz =ey z =0, 

l + d ( G x ) = O ,  
W+-o Gx dtk, E /  

Oy.=O z =Ox. v=Oxz =Oy z =0  

ey =e  z = w  s + m O x  =0  
os - 7 t  

(2.7) 

characterized by the absence of axial deformation and uniform axial stress ox = ox(t). System (2.7) 
descnl~es the growth of axial compression accompanied by variation in the sideways growth rate. Relation 
(2.6) remains formally valid: L = L a x  = g. For constant coefficients in (2.7) the axial compressive stress 
o~ = -0w becomes constant exponentially with characteristic time Xm = O/E. 

3. To analyse the stability of the steady-state growth process we consider a small deformation of a 
very extended object (~/L ~ 1, where 8 is the characteristic transverse size). Approximate equations 
describing the deformations of the object (rod) in a quasisteady process will be obtained by averaging 
the equih~orium equations (2.2) and equations of state (2.1) together with moment equations constructed 
from the latter over the cross-section area. We will confine ourselves to the case of plane bending, which 
occurs when the initial deviation of the rod axis lies in the plane of one of the principal axes of the 
moment of inertia tensor of the cross-section. By the condition of transversal isotropy and using the 
approximation considered below this assumption ensures that the deviation remains in the same plane 
(the equations governing the bending in the perpendicular plane are satisfied automatically and will 
not be considered further). In the linearized problem the general three-dimensional distortion can be 
obtained as the superposition of solutions desen~oing bending in the two principal planes. 

We introduce the system of coordinates i ,  y, z as follows: ~ is the length of the arc along the distorted 
axis,~ is measured in the plane of bending from the axis along the perpendicular to the latter, and ~ is 
measured along the perpendicular to this plane. The averaged value of a variable is its integral over 
the section normal to the deformed axis, divided by the area of cross-section. Such averages are denoted 
by angular brackets. The earlier notation (with x, y, z subscripts) are kept for the physical vector and 
tensor components in the new system of coordinates; y -- u(x, t) is the equation of the displaced axis 
in the fixed two-dimensional Cartesian system of coordinates of the observer lying in the plane of the 
bend (Fig. 2). The procedure for obtaining equations presupposes that terms of order 8/L and u/L, small 
compared to unity, will be neglected. 

The averaging of the equilibrium equations and the moment equation obtained by multiplying the 
axial projection of the momentum equation by the )7 coordinate leads to the traditional relations 

N ' -  p = 0 (3.1) 

Q = M' (3.2) 

M'" + (Nu')" = 0 (3.3) 

N = (o~y)S and Q = (o~s  are the tensile and shear forces, respectively, and M = (o~)S is the bending 
moment acting over the cross-section. The primes denote differentiation with respect to the axial coor- 
dinate x in the observer system of coordinates. The presence of a distributed compressive load p ~ 0 
is assumed, which includes both the weight of the rod itself and, possibly, loading across the lateral 
surface. During bending the load preserves its direction relative to the observer system of coordinates. 

We will consider the averaging of the equations of state in more detail. Preserving the required degree 
of accuracy, the original dependences in the new system of coordinates are identical with (2.1), while 
C~y and az can now be ignored because of their smallness compared with ox. 
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For the components of the tensor • we have 

~ r  
ex ~ ~.~ 

Y 

Fig. 2. 

_ ~ y  ~ 
e,.. - --~---, 2e~. = -O~-x + -3X -y + _.,ul, - " (3.4) 

If in the first approximation we confine ourselves to linear distributions of the variables with respect 
toy, we obtain the fi311owing relations as a result of averaging F-xlS (2.1) and the moment equation formed 
by multiplying the first equation in (2.1) byy 

w+L N--+Lf N (3.5) 
0 S d tkES)  

- [ I N  d Nil 1 d l  2 dS =4 w, + - - - - + - - ( - -  (3.6) 
I dt S dt L Os S dt k ES ) l 

(t),.)' = - (a)xY)S - (~x)u" + 2ot(Ox~. ) + d (axy) (3.7) 
• I - dt It 

where I is the moment of inertia of the cross-section with respect to the transverse axis, and the operator 
d/dt denotes differentiation with respect to time for fixed comoving axial coordinate ~. We eliminate 
the parameter (~TY) from (3.7) and (3.8) using (3.2) 

¢ 

. + d 1 M" 
t,u,.) . . . .  _ MIO dtd -((~)x)u") '+ 2ct--~-- ~-~ T (3.9) 

On the right-hand side of (3.9) the last term is of order (SL 2) when compared with the second; if 
I=1 ~ 1/0 the pentdtimate term is at least as small when compared with the first. The last two terms 
in (3.9) are therefore neglected. 

From simple geometrical considerations we obtain the constraint 

du/dt = (Dy) + (Dx>U' (3.10) 
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Relations (3.1), (3.3), (3.5), (3.6), (3.9) and (3.10) form a dosed system of equations. To determine 
the axial displacement of individual points we also need dxldt = (sox). 

4. The system of equations obtained has (if this does not contradict the boundary conditions) a solution 
describing the bending deformation of a rod for which u = 0, (.~) = 0, M = 0. The remaining variables 
N, (~x), S, I are defined by Eqs (3.1), (3.5) and (3.6) which reqmre, apart from initial conditions and an 
assumption specifying a fixed point (for example,/~Xo, t) = 0), just one physically interesting condition. 
When N(L,  t) = - Po(t) or ( ~ L ,  t) = 0 we obtain extensions of the exact solutions considered in Section 
2, where all the relations from that section which link corresponding variables in the exact solutions, remain 
valid for the averages, inducting formulae (2.5) and (2.6) (under the hypotheses specified in Section 2). 

We will now consider the problem of the development of a small perturbation of the solution, 
describing undistorted growth when the rod is bent. To do this we analyse the system of equations (3_3) 
and (3.9) (with the last two terms on the right-hand side omitted) and (3.10), in which we replace/~xl, 
N, S and I by functions obtained from the solution of the unperturbed problem, and the operator 
O/& previously denoted by a prime is replaced by the operator ~/0x(~),  where the variable ~ = ~,/& 
is also determined from the unperturbed process. To solve this system, four boundary conditions are 
required as well as the initial conditions. If one can assume that the deformation of the axial growth 
during bending is small, the operators O/'dx and Ofd~ can be identified. This formulation of the problem 
of the evolution of an initial perturbation is formally no different from that known for a rod of linearly 
creeping material [9] and was used in [10] for a growing rod. 

In the example considered below the coefficients 0, E, 0~, ws and the moment of inertia I are taken 
to be functions of time only. (For I this condition imposes an implicit restriction on the formulation of 
the unperturbed problem and is satisfied exactly for a concentrated facial load.) We also assume that 
(2.6) holds, which we recall is true not only for a concentrated load, but also when the inequality P/(SO) 
,~ w is satisfied, which does not exclude a significant influence of stresses on the lateral distortion. 

We introduce dimensionless variables ~ = ~/L0 (here L0 = L(0)) and ~ = u/L (the relative transverse 
bending), keeping the time dimensional. The system now reduces to the single equation 

1 ,~ L , ,  [ L  , , 1  
Zu, ) -LT (N. )j,--0 (4.1) 

where the tildes over the dimensionless variables have been omitted. (Below these quantifies are only 
required in their dimensionless form.) Henceforth primes and Latin letters denote differentiation of 
appropriate mnltiplieity with respect to the dimensionless comoving coordinate ~, and the subscript t 
indicates differentiation with respect to time (with ~ = eonst). If one ignores the extension of the rod 
over the distortion period (L = L0) and considers 0 and I to be constant, and N to be a function of 
time, (4.1) turns into a version of the equation considered in [9] (using boundary conditions applied in 
[9]). The relation investigated in [10] is obtained if one also ignores the elastic deformations ( l IE  = O) 
and puts N = const. 

We consider the problem with boundary conditions 

~°u(O,t) = O, ~u(l,t) = 0 (4.2) 

where k takes the values 1, 2, and ~{u are homogeneous linear forms in u, u', u ", u ". Conditions of this 
form are obtained, for example, from purely geometrical assumptions of the absence of lateral displace- 
ments of the ends (u = 0) or of rigid constraints (u = 0, u' = 0). Using Eqs (3.9) and (3.10), traditional- 
looking relations of the form (4.2) are derived from the assumption of non-restraint at one of the ends 
(u ~ ffi 0, u" = 0) or the bending moment M being set equal to zero (u" = 0). (Strictly spoaking, in these 
cases more general conditions are obtained at the boundary:, u" = C1 and/or u n = C2, allowing arbitrary 
specification of the constants C1 and C2 determined, in particular, by the geometry of the initial non- 
elastic deformation of the rod. When these constants are non-zero the absence of a stationary solution 
u = 0 excludes the problem considered below.) 

Suppose that the force N(g, t) can be represented in the form N = -No(g)P(t).  We put P > 0; then 
in the ease of a compressive load N0(~) > 0 when ~ ~ (0, 1). If the load is concentrated at the upper 
end, No = 1; when the load is just the total weight P(t) of the rod (with the dependence of the area of 
cross-section area on ~ being negligible), No = 1 - ~. 

Using separation of variables we seek solutions of problem (4.1), (4.2) in the form 

Un(~,t)=Uln(~)U2n(t) (n=1,2 .... ) (4.3) 
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Each of the eigeafunctions ut,,(~) is a solution of the equation 

# D  • • 
ul. + ~,.(Noul,) = 0 (4.4) 

under conditions 0..2), where the functions u are replaced by u~; Xn are the eigenvalues of the problem. 
The functions u2~(0 are solutions of the equation 

(4.5) 

given by the formulae 

U2.=u2.(O)expS A:dt, A.=  L- ~-  L~E-JJt "- ' IE- ) 

i f  the functions l l ln([ ) form a complete system, the solution of problem (4.1), (4.2) has the form 

u= ~UonUn(~,t) (4.7) 
n=l 

where u0n are coefficients of the expansion of the initial perturbation u0 = u(0, ~) in terms of the functions 
uln(~) (when u~(0) = 1). All the ~ > 0, and the completeness condition is satisfied if, in particular, 
amongst the constraints (4.2) we have the equalities u(0) = u(1) = 0, and a second condition u' = 0 
or u" = 0 at each end [11]. Another example which satisfies the above requirements is the problem of 
a rod loaded by its own weight, with a fixed lower end and a free upper end. Below we investigate the 
development of individual modes when ~ > 0. 

Taking the stability condition for the rod as an eiastic object (after Euler) at each instant of time 
with the same bomidary conditions and the same load, considered to be quasisteady, we obtain ~ > 
pL21(IE). Taking this restriction into account, according to formula (4.6) the perturbations grow if the 
condition 

PL+(P'/>0 (48) 
I0 \ 1E J 

is satisfied. 
The first term in (4.8) is positive because of the assumptions made above (P > 0, 0 > 0); the sign of 

the second is undelterrnined. In particular, when the radius of the section increases rapidly compared 
with the extension and growth of the load, this term can be negative. In the case when condition (4.8) 
is satisfied, all the modes grow, and the mode with greatest wavelength allowed by the boundary 
conditions develops fastest, which basically corresponds to the observed change of shape. 

Growth processes in biological objects diminish over a finite timescale t* (smaller, in general, than 
the lifetime). This t'ormally means that 1/0(t) - ,  0 and w(t) --> 0 when t --> oo, and the largest relaxation 
times of these functions is t*. Then L(t) and l(t) approach finite limits. What is significant for estimating 
the deformation of an object is not the existence of growing perturbations, but the level of their 
development over ~the growth time, computed from formula (4.6) when t -> oo (or when t = t*). The 
characteristic time of the unperturbed process x* is governed by the problem an can turn out to be 
smaller than t* (foJ~ the example of isometric loading given in Section 2 x* = O/E). Nevertheless the 
development of instability should, in general, be estimated over the time t* because the growth of the 
perturbations when x* < t < t* can also be prolonged due to the preservation of the possibility of growth 
(w~0,  1/040). 

At an unknown }level of the initial deformation the physically decisive comparison is between the 
characteristic time 't of development of the perturbation, estimated from (4.6), and the time of growth 
activity t*. If these times have the same order, x ~ t*, we have slow deformation, which can be significant 
for large initial perturbations, but does not lead to catastrophic deformation of the object; if, however, 
x >> t*, the process should be considered to be physically completely stable. One can only speak of a 
physically significant instability in the case when the perturbation develops rapidly compared with the 
growth process: x .~I t*. 

It is easy to write down sufficient conditions for "stability" in the sense explained above for growing 
perturbations (when condition (4.8) is realized) 
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1 / A~>> t* (4.9) 

(~t is the least eigenvalue).  The  s tructure o f  condit ion (4.9) ensures its violation near  the limiting Eule r  
stability o f  the rod  if the left-hand side o f  inequality (4.8) is bounded  f rom below by a positive constant .  

The  mechanism by which stability is lost due  to the effect o f  stress on  growth was first no ted  by Yentov 
[ 10] (1978 preprint) .  T he  analysis given here  produces  a more  complicated scenario than that  descn~oed 
in [10]. Even  in an  e lementary  formula t ion  this scenario does not  reduce  to simple instability o f  
axisymmetric growth unde r  compression.  The  symmetry-breaking mechan i sm investigated here  can 
participate in the shaping of  biological systems and, together  with o ther  mechanical  and chemical factors, 
should be  taken into account  when  developing physical theories o f  morphogenes is  [3, 12-15]. 

Some of  results presented above have previously appeared  in prel iminary fo rm [16, 17]. 
I wish to  thank  S. A.  Regirer  fo r  useful discussions. 
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